EV Charging: A Lucrative Market in Making

EV charging solutions market plays a central role in the ecosystem, with seven models currently in different phases of deployment. Frost & Sullivan in its latest research takes a deep dive into all seven models.

0
1858

We enter the 2020s having watched several announcements in the past two years from automakers, power utilities, and private and public transport corporations about partnering and collaborating in the transition to EVs. Cooperation announcements have so far been about smart charging, vehicle-2-grid, mobility as a service, EVs as an asset, and power grid optimization.

Acquisitions by utilities, car makers and charging infrastructure providers have made the EV power ecosystem a lucrative area to watch. The EV charging solutions market plays a central role in the ecosystem, with seven models currently in different phases of deployment. Each unique model plays a collective role in driving collaboration between stakeholders. Stakeholders in the EV charging sector include EV manufacturers, battery suppliers, power utilities and infrastructure, EV end-users, regulators, external actors, and EV aggregators.

Frost & Sullivan, in its latest research, Future Opportunities in EV Charging, Forecast to 2030, takes a deep dive into all seven models:

  • Battery swapping
  • Vehicle to home
  • Demand response with EV charging
  • Smart charging
  • Fast charging
  • Wireless charging
  • Vehicle to grid

Battery Swapping

Battery swapping works by exchanging an existing battery pack with a newly charged pack at the charging station. The user can come back later to collect his/her old battery pack or can continue to use the new pack. A service fee is charged based on the difference of charge between the old pack and the new. Cell manufacturers, swapping station operators, and electric utilities play a central role in this model. Even though it reduces the amount of time taken to charge an EV to less than a minute, simply by swapping, it poses a layer of complexity at the swapping station as the battery packs need to be charge-ready.

V2X (Vehicle-to-Home and Vehicle-to-Grid)

In liberated energy markets, consumers can play an active role by selling back the excess energy produced to the power grid, accruing monetary benefits at market price. Solar PV has been the most common local energy source used for this purpose. Similarly, with EVs, consumers have the option to sell energy back to the grid and accrue monetary benefits. This functionality has paved the way for two evolving concept markets in EV charging today, Vehicle-2-Grid (V2G) and Vehicle-2-Home (V2H). The former works on the principle that EVs are a usable energy asset and can sell that energy back to the grid when not in use, whereas the latter can use that energy to source power to a household.

Demand Response with EV Charging

Power utilities play a central role in this model. Knowledge of real-time supply-demand situations and other grid-related events are passed on to the demand response cloud server of the solution provider by the utility. The demand response server and network running on cloud will, in turn, modify the instructions to the EV charging station through its application program interface (API).

Smart Charging

Smart charging brings together three critical features. It can help avoid charging during peak demand, increase renewable energy utilization, and provide flexibility to the customers when charging their EVs. The owner, power supplier and charging solutions provider will be required to collaborate in this model.

Fast Charging

Fast-charging solutions that enable EVs to go from a 0 per cent to 100 per cent state of charge within five minutes and that can travel at least 160 km on a single charge are in demand. Fast-charging capabilities will allow the EVs to be more competitive with alternative technologies such as fuel cell vehicles and increase the business case. A fuel cell car can fill up 5 kg of hydrogen at 350 bar within five minutes.

Inductive or Wireless Charging

Inductive charging works on the principle of magnetic induction. The charging plate housing the primary coil in an EV is lowered to transfer energy between the charging plates located on the road. Locations such as bus depots, bus stops, and truck stops are the prominent locations for housing charging plates.

Conclusion

Uptake in charging solutions play a key role in eliminating the anxiety of charging infrastructure availability for EV users. The charging solution’s ease of operation, 24/7 availability, speed of charging, pricing and support for a variety of EVs are crucial to ensure the solution succeeds on a mass scale. Digital support for charging solutions will be a valuable addition for consumers. Forming partnerships or collaborating with end supplier utilities, technology solution providers or digital platform providers to maximize the value proposition will play a key role in shaping the charging solutions industry in the 2020s.

Leave a Reply